S1-€/

N96- 12924

(-

A DYNAMIC SATELLITE SIMULATION TESTBED BASED
ON CLIPS AND CLIPS-DERIVED TOOLS

Thomas P. Gathmann
Rockwell International
Satellite & Space Electronics Division
Seal Beach, CA

Problem

Current day spacecraft are complex ma-
chines and those on the drawing boards are
increasingly more sophisticated and
broader in scope. Gone are the days when a
single engineer could fully grasp the intri-
cacies of an entire satellite. Note that the
recently launched Galileo spacecraft has
several processors on-board the vehicle [1].
This fact, coupled with the increasing
power of computing hardware and saftware
tools and techniques, has introduced the
possibility of realistic simulations being
used for product definition, design, manu-
facture, and, even, performance analysis.
The Strategic Defense Initiative Office
(SDIO) is convinced of simulation capabili-
ties since it has funded the National Test Bed
(NTB) facility to evaluate the performance
of all facets of the “Star Wars" concept.

Due to heated competition for the develop-
ment and delivery of sateilites, there is an
increased reliance on simulation of compo-
nents, subsystems, sysiems, and entire
constellations of spacecraft. Given the wide
variety of configurations and purposes of
these satellites, [lexible and convenient
means for generating study and engineer-
ing data are necessary [2-4]. Monolithic
simulations have become unwieldy and ex-
pensive (o maintain. Conf jgurable tools that
can be quickly and accurately constructed
are required. Rapid prototyping techniques
have become more accepted within the
aerospace industry for the production of
deliverable software and aiso as a means 10

manage the software process (5).

We were motivated to define and build a so-
phisticated satellite simulation capability
for the evaluation of a satellite operations
automated environment called IntelliSTAR™
{6.7]. This architecture, and associated
prototype, addresses the entire spacecraft
operations cycle including planning, ,
scheduling. task execution, and analysis. It
is aimed at increasing the autonomous
capability of current and {uture spacecraft.
It utilizes advanced software techniques to
address incomplete and conflicling data for
making decisions. It also encompasses
critical response time requirements, com-
plex relationships among multiple systems,
and dynamically changing objectives.
Given the extreme scope of activities that
are targeted, a sophisticated, flexible, and
dynamic simulfation environmenl was re-
quired to drive this prototype. In particular
the derived requirements for evaluating the

IntelliSTAR™ prototype include:

e provide realistic and dynamic envi-
ronment

e easily reconfigurable

e multiple levels of [idelity

The overriding need of IntelliSTAR™ was a
means for providing a valid evaluation of
the concept (see Figure 1). This evaluation
was planned to be accomplished through
the injection of various scenarios describ-
ing mission and behavior types for the
spacecraft to be controlied. Given this

AB6



stimulus, the IntelliSTAR™ prototype pro-
vides measures of the plan and its status to
satisly the objectives for the satellite mis-
sion.

Approach

The testbed approach to simulation has
risen to the 1op of the list of options due o0
the following attributes:

o flexibility to easily configure based
on unique customer requirements

e modularity of the simulation com-
ponents 1o allow the testing of
portions of the overall system or
varying degrees af fidelity for
portions within the same simula-
tion

¢ interoperability through the use of
consistent user and integrator
interfaces for reduced training.

Side benefits include the centralized storage
and accumulation of metrics and related in-
formation of the simujation capabilities and
past usage of the testbed.

Our approach to the development, utiliza-
tion. and maintenance of a sophisticated
satellite simulation testbed is the use of
rapid prototyping and knowledge-based
techniques coordinated with the use of
existing simulation and communication
resources. An architecture has been de-
fined that provides the following attributes
for a spacecraft simulation that addresses
autonomy, surveillance, and survivability
capabilities (see Figure 2):

¢ integrating architecture that sup-
ports the expansion of capabilities
and resources

e high-level user interface for speci-

k\\\\\\\\\\\\‘

BPvEMt ORBITAL MECHAICS PV

PROJ MAMT PROSCT MANAGEMINT TOOL ICOMMERCIAL)

PAVLOV TRANELATOR | GRALATION GENERNATOA ()

PAVLOY SPACECRAFT SBAAATOR AN

SADEM SATELLITE ATTAGK AND DUFENEE SMOASIMENT
MODRL, )

Figuare 1. m&l&:mWEMTMum&U»&MMMWTwBW

a81




Figure 2. mmmmn-mmmumw»mvms«.mw
Prowtype.

fying simulation requirements and
features in the form of a modelling
language

e automated transiator from the
modelling language to CLIPS code
which can be executed

e separability of generic spacecraft
features from specialized compo-
nents, subsystems, and payloads

e interface to an existing survivabil-
ity simulation

e interface to an existing intelligent
satellite operations framework

® irnterr ace to a graphical user inter-

ace

Architecture Description

We are using CLIPS as our basic program-
ming language to create the modelling
fanguage, language translator, and simula-
tion itself. The modelling language allows
an engineer to specify the behavior of a
system or subsystem in high-level terms
that could be directly derived from specifi-
cations. The transiator takes the modelling
fanguage constiructs, verilies their consis-
tency. and creates CLIPS knowledge bases
which can be executed. The simutation uses
the CLIPS forward-chaining mechanism as

488



the driving force behind a system that is
scalable to real-time events. Time can be
specified directly or used in relative terms
to compress or expand time to meet user
requirements.

Satellite Modelling Language (SML)

The modelling language was created to
provide a higher level interface to the
identified end-user, a spacecraft design
engineer. This interface allows the engi-
neer to input requirements and features in
a format which is familiar. This promotes a
more rapid acceptance and utilization of the
testbed resource resulting in increased
productivity and the exploration of a larger
number of engineering options.

SML provides context-relevant and English-
like language constructs to the spacecraft
engineer. Through these constructs, the
capability to describe events and timing is
provided. This is accomplished through the

use of three main structure types: templates,

objects, and rules. Templates define con-
glomerations of objects,
objects relate to physical

required siates. Side effects of component
actions are relied upon heavily on space-
craft. These factors closely match the ad-
vantages of a system built with CLIPS.

Modelling language translator

The modelling {anguage translator accepts
the simulation specification from the engi-
neer and converts it into CLIPS knowledge
bases which can be executed (refer to Fig-
ure 3). This circumvents the need for the
spacecraft engineer to become familiar
with a new, and probably very different,
software language. Also, since the CLIPS
simulation code is automatically generated,
the proper syntax and semantics are main-
tained within the knowledge bases. CLIPS is
being applied in a2 manner much like an in-
formation compiler.

The translator accepts the SML constructs
and converts them into CLIPS-acceptable
syntax. Templates and objects are converted
1o facts while behavior rules transiate into
CLIPS rules. The CLIPS rules handle all the

or functional entities, and
rules describe the behav-

(doinde TCS_NOMINAL_FOWER_ON

ior of the objects for

o_tan - gum TCB_MOMINAL_FOWER_OM)

various conditions.

The simulation itself uses
CLIPS' forward-chaining

o_TCAPOWER_OPFERATION_COM <- (varishis-dain
TCEPOWER_OFERATION COM

technique to create 8
reactive and dynamic
model of a spacecraft in
its orbiting eavironment.
Since spacecraft typically

operale in a data- and

situation-driven environ-

ment, CLIPS is a perfect
match. Processes on a
satellite are usually in-
voked on either a time or

event basis. The stimuli
cascade through many de-
vices and components to

achieve the necessary and

Figure 3. The Translator Capability Permits an Incremental Construction of a

Spacecraft Simulation.

489




bookkeeping involved with the behavior
such as retracting facts after they are no
longer required and asserling the pertinent
facts.

The transiator permits the incremental con-
struction of a complete simulation capabil-
ity. In practice, the modules are aligned
with the subsystem designs. For instance,
the Thermal Control Subsystem (TCS) tem-
plates, objects, and behavior rules are all
defined within a single file. The translator
maintains a list of all possible constructs
and allows the linking of these in any man-
ner specified by the user. The linking pro-
cedure also adds the executive liming con-
trol to the executable simulation.

Satellite simulation

The satellite simulation generation method-
ology is represented in Figure 4. Two paral-
el development paths have been identified
for the creation of a realistic and dynamic
evaluation environment for the IntelliS-
TAR™ prototype. One path concentrates on

“Black bar tesung /s pol an a/-
ternative o white bar tech-
aigues. 11 is, ratber, 8 comple-
mentary approach st is likely
lo upcover a diYerent class of
errars lhan white bor melbhods.”

(8]

Behavioral models permit the description of
the inputs and outputs of a [unction (or
process or subsysiem of .). These models
permit an empirical or high-leve! descrip-
tion of an entity. These models can be
constructed quickly with readily available
information and allow various levels of de-

tail.

Functional models require an extensive
evaluation of the theories and principles
behind the operation of an entity. These
models result from the classical design
phase of an engineering process. Func-
tional models have typically been developed
in a monolithic mode. Good examples of
fupctional mode! implementations are the
current Computational Fluid Dynamics (CFD)
codes being constructed.

e

L e and

Figure 4. MWWDMWJ:WEVMWWM&WM

the creation of behavioral models while the
other generates functional simulation
capabilities. Behavioral models take the
*black box” approach to testing. Functicnal
models are analogous to the “white box" ap-
proach. This approach is justified by re-
marks such as the following:

The combination of these two simulation
methods allows the generation of realistic
environments quickly while not negating
the growth path to more robust and in-
depth simulation. In [act, the overall evalu-
ation architecture permits the injection of
models of varying fidelity levels into the
same simulation. Behavioral and functional
model can co-exist in the architecture. This
provides a flexible medium for testing of the

490




IntelliSTAR™ prototype. In addition, the
evajuation environment is not strictly tai-
lored to that prototype, but also permits the
construction of any satellite models.

The test architecture encourages a modular
generation and management of its constitu-
ent parts. A conscious design decision was
made to make the generic satellite bus
characteristics separable from the special-
ized subsystems or payloads that comprise a
spacecraft. By doing so, a generic capabil-
ity for simulating spacecraft was created.
This mode] will continue to evolve and the
available “library” of models will increase
as this effort proceeds. In fact, a major
satellite effort at our division is contemplat-
ing the use of this capability because of the
attractiveness of minimal cost to tailor the
system for their purposes. Our research can
continue in paralle! with this satellite ap-
plication since models can be interchanged
with little effort.

Intertaces

Three types of interfaces currently exist to
the simulation environment. These include
one to the IntelliSTAR™ prototype, one 10 an
existing survivability simulation, and the
last 10 a user interface capability. The
mechanism used for all three interfaces is
the same: the results of a generic, distrib-
uted process communications project are
utilized.

The interface to the IntelliSTAR™ prototype
is implemented 1o aliow the evaluation of
this satellite operations concept. The inter-
actions between the prototype and the
simulation are of two types: continuous and
requested. The first type, continuous, con-
tains the telemetry stream content from the
spacecraft to the controlling entity (ie.
IntelliSTAR™). The infor mation flow is
handshaked between the two portions but
the interface is not truly synchronous.
IntelliSTAR™ provides an execution time
frame 10 the simulation and the simulation
responds for that amount of time or al some
smaller increment. The response time is

solely determined by the simulation with
only the upper bound specified by the
prototype.

The second type of interface to IntelliSTAR™
is closer to being of the synchronous vari-
ety. A request is made of the simulation for
information and the simulator responds
with the derived data. The prototype may or
may not wait for the results of its query
before proceeding with its processing.

An interface with an existing survivability
simulation (SADEM - Satellite Attack and
Defense Engagement Model) was con-
structed. SADEM is constructed in an object-
oriented and distributed environment.
SADEM schedules a communications event to
the spacecraft simulation at either a time or
based on some condition. Currently, this
interface is only one-way due to a limitation
in the SADEM development environment.

The last interface is to the user interface
module. This interface allows the control
and execution monitoring of the simulation.
Individual measurements being generated
by the simulator may be presented with
user-specified limits. Graphical representa-
tions of the data are aliowed.

Conclusions

The simulation environment allows the in-
tegration of several levels of fidelity and
the configuration of many diverse compo-
nents. The modelling language transiator
assures the consistent generation of syntac-
tically and semantically correct spacecraft
simulations. The “garbage in, garbage out”
syndrome of many simulations is minimired
through the active application of knowl-
edge about spacecraft in general. This
approach, and associated testbed develop-
ment, enables the creation of a sophisticated
and consistent satellite simulation environ-
ment used for the design, manufacture, and
analysis of satellites and their related op-
erations environments.

491



Reterences

(1) ekt Reonesenls Rek i esion LomakeXiy .
Aviation Week and Space Technology. Oct. 9,
1989.

[2] Mitchell, Robert R., _ExpartSystems aod Air
(mbar Simulstian . Al Expert, September 1989.
131 Rao Naseswarasv _Amamrfamt

IEEE Computer Magazme une
1989.
{4] Brown, Marc H.,

_Exphning Algaatbas [sng
ALafsr-/I” TEEE Computer Magazine, May 1988.

{S] Boehm, Barry W,

~ EEE Computer
Magazine, May 1988.
6} Gathmann T.P. L. Raslavicius, and JM

Barry, 2

mmmmmm:zm lmersou-
ety Energy Conversion Engineering Confer-
ence (IECEC-89), Aug. 6-11, 1989.

[7] Gathmann, TP, and L. Raslavicius,

AlAA Computers in Aerospace, Oct. 4-6, 1989,

(8] Pressman, Roger S.. _Sa?ware Saznserig -
A Bracianer’s Aporoad”

® McGraw-Hill Com-
pany, 1987.

492



